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QSIM: A QUEUEING THEORY MODEL WITH
VARIOUS PROBABILITY DISTRIBUTION FUNCTIONS

INTRODUCTION

Queueing theory can analyze any system characterized by a “demand for service” (or
demand for a limited quantity). This demand for service characterizes many warfare operations,
with queueing theory having the capability of quantifying the various tasks that would be
involved in such events. In particular, queueing theory could be extremely advantageous for
anti-air war (including fighter interception and cruise missile defense), strike missions, self-
protection, command and control networks, and antisubmarine warfare (ASW). In all these
situations, there clearly are “customers” waiting for a “service.”

ASW offers many opportunities for the application of queueing theory. One such example
involves the sonar detection and classification process, in which the customers are incoming
sonar contacts and the servers are the sonar operators who must detect and classify the various
contacts. In another instance, the user would be the command and control network inside a
submarine or surface ship. Here, the customers are incoming information and reports, and the
servers are the decision-makers who must act on the information (anyone from the captain of the
ship on down to a squad commander).

Various probability distribution functions (PDFs) describe a queue. Customers arrive at the
queue according to some probability distribution, and the time spent receiving service follows
another PDF (usually different than the arrival distribution). Customers can leave the system
before completing service (renege), with a probability distribution describing the time spent in
the system before leaving. In addition, there may be a limit on the length of the queue. Balking
occurs if the queue is full when a customer arrives and the customer does not enter the system.

Most analytical results from queueing theory focus on the exponential PDF. To that end,
there are numerous closed-form formulas for a variety of queue types and queueing metrics.
However, exponential PDFs do not adequately characterize all warfare events or processes (€.g.,
a high probability of a short decision time could be unrealistic).! Because a limited number of
formulas exist for nonexponential PDFs (many are loose upper bounds only, not exact solutions),
a simulation is needed to analyze the queues described by this type of function. The remainder
of the document describes one such model, which is named QSIM.

QSIM is a discrete-event system simulation coded in C++ that uses a Monte Carlo approach
to generate various well-behaved statistics. On a given iteration, QSIM generates and processes
customers until the global clock exceeds the user-defined simulation time. To ease expansion
and testing, QSIM uses an object-oriented (OO) approach, and to facilitate programming, QSIM
represents each customer as a C++ class with the following data members:




Arrival time — indicates when the customer entered the system (based on a

user-selected PDF).

Service time — describes when the customer started service (determined during

execution).

Renege time — indicates how long to wait in the queue/system until reneging (based on a

user-selected PDF).

Service length — describes how long to spend in service (based on a user-selected PDF).

Priority level — is employed when the user selects priority queue (if necessary, based on

user-input priorities).

The queue and server(s) are stored in a standard template library (STL) vector data structure.
The STL vector provides quick access at the ends, along with the capability for sorting the
elements.

QUEUEING THEORY NOTATION

This document uses standard queueing theory shorthand notation.? Referred to as Kendall
notation, a queueing process is described by a series of slashes and symbols such as A/B/X/Y/Z,
where A is the PDF of the arrivals, B is the PDF of the services, X is the number of parallel
service channels, Y is the maximum system capacity, and Z is the queue discipline. Table 1
presents several of the common symbols.

Table 1. Queueing Theory Shorthand Notation A/B/X/Y/Z

Notation Explanation

Arrival time distribution (A) M Exponential

Service time distribution (B) D Deterministic
Ex Erlang type k (k=1,2,...)
Hyg Mixture of exponentials
PH Phase type
G General

Number of parallel servers (X) 1,2,..

Restriction on system capacity (Y) | 1,2,..

Queue discipline (Z) FCFS First come, first served
LCFS Last come, first served
RSS Random selection for service
PR Priority
GD General discipline




In practice, only the first three symbols (A, B, and X) are typically in use. For this particular |
study, the FCFS queue discipline is the only one employed (assumed when Z is not present), and
the system capacity symbol Y is dropped when Y = 0.

In a sample notation, M/M/2/5 describes a queueing system with exponential input,
exponential service, two servers, a system capacity of five (maximum queue length of three), and
an FCFS queue discipline. An extension of the Kendall notation handles reneging. For example,
A/B/X/Y/Z + C describes a queueing process with reneging, where C is the PDF describing the
reneging (C can assume the same values as A and B).

RELATION TO PAST WORK

In the Undersea Warfare (USW) Analysis Department at the Naval Undersea Warfare Center
(NUWC) Division in Newport, RI earlier work with queueing theory focused on analytical
results from Ancker and Gafarian.® The results in reference 3 are particularly interesting because
of the derivation of closed-form formulas for various queueing metrics. However, there are
certain limitations, the most significant of which is that the formulas are valid only for
exponential distribution functions regarding arrival, service, and renege rates. Formulas for
general probability distributions are nonexistent, and thus a simulation is required. Another
drawback of the Ancker and Gafarian formulas is their use of cumbersome special functions
(e.g., incomplete gamma and beta functions) that require a computer or complex table
calculations. Finally, Ancker and Gafarian provide only a short list of metrics, which is often t00
restrictive to be useful. Table 2 compares their metrics to those that can be computed by QSIM.

Table 2. Queueing Theory Metrics Derived by Ancker and Gafarian Compared
to Those Computed by OSIM

Queueing Theory Metric Ancker and Gafarian | QSIM

Probability of Acquiring Service X X

Loss Rate X

Waiting Time in the System/Queue X

Probability of Balking

Probability of Reneging

Number of Arrivals

Number of Services

Number of Reneges

PR PR > [ ] ™

Cumulative Distribution of Waiting Time (System/Queue)




" APPLICATION AND INTERPRETATION OF QUEUEING TERMINOLOGY

The relationships between queueing theory terminology and warfare terminology are not
necessarily obvious, with table 3 showing one of the many relationships that is possible. It
should be noted here that other warfare areas are similarly connected.

Table 3. Ohe of Many Possible Relationships Between
Queueing Terminology and Sonar Terminology

Queueing

Terminology Sonar Terminology

Queue Sonar workstations/watch stations

Server Sonar operator

Arrival Rate Rate at which contacts come into detection range

Service Rate Rate at which contacts are detected/classified by the operator

Renege Rate Rate at which contacts leave detection range before
detection/classification

Balk Overload of sonar operator resulting in a contact not being seen on the
scope

QSIM INPUTS

There are several inputs into QSIM, all of which are unit independent, with the user
responsible for ensuring that the units are consistent. Required QSIM inputs are listed below:

e Arrival and service PDFs, along with their associated parameters;

e Number of servers;
¢ Queue length (can be infinite);

¢ Simulation time (maximum length of time per iteration);* and

e Number of iterations.

*To ensure accurate results, the simulation time should be greater than or equal to 200,000 and the
number of iterations greater than or equal to 1,000. These values, determined through trial and error, were

chosen to average out the initial transient period.




The optional QSIM inputs are as follows:

e Renege PDF and associated parameters;

e The choice of reneging out of the queue only or reneging out of both the queue
and service;

e Priorities for a priority queue, which are limited to four in the GUI, which is the
graphical user interface (with a file, the number of priorities is unlimited);

¢ File name describing heterogeneous servers (PDF and associated parameters of
each server);

e Upper limits on generated PDF of waiting time in the queue and waiting time in the
system (default is 100 time units); and

e Threshold value for P(T > ) (computation of tails of generated PDFs) for the waiting
time in the queue and the waiting time in the system.

QSIM OUTPUTS

The steady-state QSIM outputs are listed next:

e Mean time in the queue with 95% confidence interval;

e Mean time in the system with 95% confidence interval;

e Probability of acquiring service, balking, and reneging;

e [ ossrate;

e Number of arrivals, services, balks, and reneges over all iterations;

e Maximum length that the queue reached during simulation;

e If applicable, P(T > t) for the waiting time in the queue and waiting time in the system;
e Ifapplicable, an Excel chart and graph containing all the above, plus PDFs of waiting

time in the queue and waiting time in the system and the user-selected PDFs with
associated parameters.




ALGORITHMS IN QSIM

The procedural steps for the primary algorithms involved in the simulation of a QSIM queue
are presented in the following subsections.

MAIN ALGORITHM

Step 1:

Step 2:

Step 3:
Step 4:
Step 5:

Step 6:

Step 7:

If the user selects reneging, then call the Renege Algorithm.

Handle the current event.
Step 2(a): If the current event is an arrival, call the Arrival Algorithm.
Step 2(b): If the current event is a service, call the Service Algorithm.

Call the Global Clock Algorithm.
If the user selects a priority queue, then order the queue according to priorities.
Order the service queue by time remaining to complete service.

If the global clock exceeds the simulation time, then compute statistics and proceed
to the next iteration.

If the number of iterations is less than the user-input maximum number of iterations,
then return to step 1. Otherwise, display the results to the user.

ARRIVAL ALGORITHM

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Increase the arrival count by one.

Check to determine if there is space in the queue for another customer. If not,
increase the balk count by one and return.

Generate a new customer based on user-input parameters and PDFs.

Based on the user-selected distributions, determine how long the customer should
wait in service, and if the user selected reneging, determine how long the customer
should wait until reneging (both are draws from supplied probability distributions
and associated parameters).

If the user selected a priority queue, then determine the priority of the customer using
the Priority Algorithm.

Place the new customer at the end of the queue.

If a server is available, call the Service Algorithm.




SERVICE ALGORITHM

Step 1: If no customer is currently in service, place the head of the queue into service
and return.

Step 2: Compute how long the head of the service queue was in service and update the
histogram of waiting time in the system. Do the same for the waiting time in the
queue.

Step 3: Increase the service count by one.

Step 4: Delete the front of the service queue.

Step 5: If there are customers in the queue, place the head of the queue into service.

RENEGE ALGORITHM
Step 1: If the queue is empty, return.

Step 2: Scan the entire queue, recording which customers have been in the queue longer than
their renege time.

Step 3: Delete any customers from the queue who have been in the queue longer than the com-
puted renege time and increase the renege count by one for every customer deleted.

Step 4: If the user selected reneging from service, then repeat steps 1-3 for the service queue.

PRIORITY QUEUE ALGORITHM
Step 1: Determine if the user-input priorities are from a dialog box or from a file.

Step 2: If from a dialog box, then use the following format to save the priorities into
an array:

x[1]=pl
x[2]=pl +p2
X[3]=pl +p2 +p3

x[4] =pl +p2 + p3 + p4
Go to step 5.

Step 3: If the user-input priorities are from a file, then open the file.

| Step 4: While reading the file one line at a time, compute a running total of the priorities and
‘ store this running total after each line is read.
|
|
|
|




Step 5: Generate a uniform (0,1) U using the RANROT W routine (described later).
Step 6: For some #, determine x[i] < U <x[i + 1] and then assign the customer priority i.
Step 7: Once QSIM is running, order the queue according to priorities on every time step.

ALGORITHM FOR ADVANCING THE GLOBAL CLOCK AND
DETERMINING THE NEXT EVENT

Step 1: Determine when the arrival will occur and when the next service will occur.
Step 2: Set the next event to the smaller of the two times from step 1.

Step 3: Advance the global clock by the smaller of the two times from step 1.

HETEROGENEOUS SERVER ALGORITHM

Step 1: Read the input file and create an array containing the PDF and associated parameters
for each server.

Step 2: To assign a server to a customer, randomly assign one of the free servers.

Step 3: Compute how long the customer should stay in service based on the parameters of
the assigned server.

PROBABILITY DISTRIBUTION FUNCTIONS

There are eight PDFs presently available in QSIM:

e Exponential
e Poisson
e Lognormal

e Inverse Gaussian

e (Gamma

e Erlang

e Weibull

e Uniform



Appendix A provides the PDF, the cumulative distribution function (CDF), parameter
descriptions, and, as shown in table 4 below, a typical interpretation of PDFs in the sonar world.

Table 4. Typical Interpretation of PDFs in Sonar Applications

Distribution
Function Typical Interpretation in Sonar Applications

Exponential Time until first sonar contact

Poisson Number of sonar contacts in a given time

Log Normal Clutter density in signal processing

Inverse Time delays in ASW processes characterized by random walk with positive
Gaussian drift

Gamma Waiting times between each sonar contact in a given time period

Erlang Service times in an N server queue with homogeneous server times
Weibull Time until failure of first sonar unit

Uniform When arrival or service times are known but nothing is known about the

distributions

QSIM can parameterize all the probability distributions, thus allowing the user to analyze
ranges of input values. The user chooses the range of the parameters for the distribution and the
step size. At this point in its evolution, QSIM can only parameterize one of the arrival, service,
or renege events at a time.

In addition to the eight PDFs in table 4, the arrival distribution has two additional options:
a deterministic arrival rate and a multiple arrival rate. The deterministic option allows the
user to provide a file containing the times when arrivals will occur (e.g., arrivals occur at
times 1, 3, 5, 7,9, 11). Such deterministic arrivals arise in a variety of situations, as can be
seen from an analysis of the logs that provide the data relating to the detection of new
contacts. These logs are typically used to study the different configurations of sonar operators
and sensors. The multiple arrival rates option allows the arrival of various types of customers
with different PDFs and parameters. For instance, benign and hostile sonar contacts arrive at




different rates and follow different PDFs. QSIM picks the arrival of the next customer by
computing the time until the next arrival for each of the distributions and chooses the smallest

of these times.

COMPUTATION OF STATISTICS

A Monte Carlo approach is used to compute various queueing metrics. Over all iterations,
QSIM stores running totals of the number of arrivals, completed services, reneges, and balks.
Equation (1) lists formulas for the various probabilities calculated with these counts:

P(Acquiring Service) = #Complete.:d services
#arrivals
#reneges
P(renege) = ———=—,
#arrivals
1
P(balk)y = 2Ks_ )
#arrivals
Loss Rate = # balk +#renege

simulation time * number of iterations

To compute the average waiting time in the queue and the average waiting time in the
system, QSIM saves the time for every arrival. The following tasks are performed after the
customer completes service:

e Compute the time in the queue and in the system.

e Keep a running total for both waiting times.

e  Compute the averages upon completion of the given iteration.

e  Compute the averages over all the iterations at program completion.

The result is the sample mean for the waiting time in the queue and the sample mean for the
waiting time in the system (average waiting times exclude customers who renege, but include
customers who enter service immediately). This is the point where the long simulation time and
large number of iterations are important. If the sample mean contains a disproportionate number
of values from the initial transient period, then the steady-state averages will not be correct. The
large simulation time helps to average out the times from the transient period.

10



Equations (2) and (3) show how QSIM computes confidence intervals. First, from the
sample means above, the standard deviation is computed as

# iterations-1 —\2
o= & -3

@

QSIM then computes the 95% confidence intervals based on the normal distribution as

— *
T4 1.96*c . 3)

/#iterations

When a customer completes service, QSIM updates a histogram of the waiting time in the
queue and the waiting time in the system. The intervals for the histogram are one time unit apart
and initially bounded above by 100 (this upper bound can be changed). As each customer
completes service, QSIM updates the number of occurrences for every interval. Upon program
completion, the number of occurrences in each interval is divided by the total number of
occurrences to obtain the final PDF.

GENERATION AND VALIDATION OF RANDOM VARIATES

To create arrival, service, and renege times, QSIM requires a random variate based on user
input. QSIM generates this random variate by drawing from the distribution (see appendix B).

All the routines from appendix B depend on the generation of a uniform (0, 1) variate, which
can be accomplished by the RANROT W algorithm. Developed by Agner Fog,' RANROT W
has been successfully run through the DIEHARD suite of tests developed by George Marsaglia.’
Other tests, conducted at the 0.05 significance level, are listed below:

e Kolmogorov-Smirnov — for uniformity;

e Chi-squared — for uniformity;

¢ Runs up and runs down — for independence;

e Runs above and below mean — for independence.

For every test, 100 streams of 223 = 8,388,608 numbers were generated with different seeds
(time in milliseconds) used in each stream. Four runs failed the Kolmogorov-Smirnov test, and
one run failed the chi-squared test. Seven runs failed the runs-up and runs-down test, and six
failed the runs above and below mean test. On average, five runs should fail during each of the

four tests. Based on these results, it was determined that RANROT W passed the tests for
independence and uniformity.

11




ADVANCED PROPERTIES

Based on user input, QSIM can compute several advanced properties. The first computation
involves limiting the PDFs of the waiting time in the queue and the waiting time in the system.
If users know to truncate the PDFs a priori, they can prompt the program as to where the cutoff
should be. For the waiting time in the queue and the waiting time in the system, QSIM can
compute P(T > ¢) for any 7 (i.e., the tail end of the PDF).

The length of the warmup period (usually set to zero) is used to reduce the effect of the initial
transient period and can be changed by the user.

Finally, the user can set the seed that initializes the RANROT W routine. If this seed is left
at zero, then QSIM uses the time in milliseconds as the initial seed.

QSIM VERIFICATION

The metrics for verification include waiting time in the queue, waiting time in the system,
and the probability of acquisition. Results from QSIM were compared to closed-form
analytical formulas (see appendix C for formula derivation), with the following inputs used in

each run:

e Exponential PDF for arrival, service, and, if necessary, renege;
e Simulation time of 200,000;
e 2,000 iterations; and

e Infinite queue length.

Tables 5 through 8 summarize the comparison of QSIM to the analytical formulas, and
appendix D provides detailed verification results.

The slight differences between the values calculated by QSIM and those calculated by the
formulas are due to round-off errors and the inclusion of times from the transient period. It is
speculated that increasing both the simulation time and the number of iterations will improve
accuracy, with the only effect being an increased run time.

Because of the object-oriented nature of the program, the verification results show the

validity of QSIM independent of the arrival, service, and renege PDFs. Thus, the logic of
moving customers through the system is correct, as is the computation of statistics.
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Table 5. Comparison of QSIM and M/M/1 Queue Without Reneging

Average Waiting Time
in the System
(minutes)
Arrival Rate Service Rate
(per hour) (per hour) QSIM Formula
4 8 15.00 15
5 6 59.90 60
5 7.5 24.00 24

Table 6. Comparison of QSIM and M/M/1 Queue with Renege Rate of 2 per Hour

Average Waiting Time
in the Queue (minutes) Probability of Acquisition
Arrival Rate | Service Rate
(per hour) (per hour) QSIM Formula QSIM Formula
4 8 2.96 2.96 0.883767 0.883799
5 6 6.05 6.06 0.768012 0.768097
5 7.5 431 432 0.833837 0.833855

Table 7. Comparison of QSIM and M/M/k Queue Without Reneging’

Average Waiting Time in
the System
(minutes)
Arrival Rate Service Rate
(per hour) (per hour) Number of servers QSIM Formula
4 8 2 8.00 8.02
4 8 3 7.54 7.54
8 4 3 21.64 21.66
6 3 3 28.84 28.9
100 4 50 14.99 15

*The last line shows QSIM can handle large numbers of servers and rapid arrival rates.
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Table 8. Comparison of QSIM and M/M/k Queue with Renege Rate of 2 per Hour

Average Waiting Time
in the Queue Probability of
(minutes) AchiSitiOH
Service
Arrival Rate Rate Number
(per hour) | (per hour) | of Servers | QSIM Formula QSIM | Formula
4 8 2 0.339 0.340148 0.987110 | 0.987120
4 3 0.0359 0.036064 0.998687 | 0.998685
8 4 3 2.079 2.081446 0.919322 | 0.919322
6 3 3 2.287 2.287861 0.907835 | 0.907787
QSIM EXAMPLE

The following example shows how QSIM works and, more specifically, how its output is
used to analyze a warfare task. Although this particular illustration is not a complex one, it
should be noted that QSIM is capable of addressing problems that are far more complicated. To
begin, the following assumptions regarding the example are made:

e A blue ASW force is searching for a red submarine in a cluttered environment.
e The Antisubmarine Warfare Commander (ASWC) decides to search with helicopters only.
e Each helicopter searches with a dipping sonar.

e Multiple helicopters are operating in a network centric warfare (NCW) environment (i.e.,
each helicopter shares a real-time common operating picture (COP)).

The question to be answered is how much improvement is gained (or lost) by having multiple
helicopters search for the red submarine. The two metrics examined are the probability of
acquiring service (i.e., the probability that a given sonar contact is detected and classified) and
the mean waiting time in the queue (i.e., how long the contact was on the sonar scope before the
sonar operator began the classification process). This example addresses neither the question of
correct classification nor the question of contact prioritization based on target behavior and/or

operator experience.

Each helicopter is a server while incoming sonar contacts are the customers. To examine
how the helicopters fare against varying threat levels, the arrival rate (rate of incoming sonar
contacts) is parameterized from 0.25/hour to 5/hour (1 every 4 hours to one every 12 minutes) in
0.25-hour increments, with an exponential PDF. To account for the red submarine possibly
moving out of the detection range before classification, a renege rate of 0.3 3/hour was used with
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an exponential PDF (reneging occurs only from the queue). It is assumed that all helicopters are
equal and that each has a service rate (rate at which sonar operator can classify contacts) of
0.5/hour, with an exponential PDF. Each helicopter can handle a finite number of contacts, such
that the maximum number of contacts will vary as a function of the number of helicopters.
However, for simplicity, it was assumed that the system of helicopters can handle only 20
contacts at a time (i.e., the queue length is 20).

The other inputs into QSIM are the simulation time and the number of iterations. In this
case, the simulation time is 100,000 with 1,000 iterations. To generate the graphs shown in
figures 1 and 2, three runs are required (one each for 1, 3, and 5 servers). Merging the data from
all three runs creates the single data set seen in the plots.

The figures illustrate the effect of NCW on the probability of acquisition. As the number of
searching helicopters increases, the number of contacts seen by each helicopter becomes less;
thus, the effective arrival rate decreases. Hence, the mean time a contact spends on the scope
before detection and classification decreases, and the probability that a helicopter will detect and
classify a given contact increases (note that false contacts and misclassification are not
addressed). In addition, NCW allows assets to share information, thus avoiding investigation of
contacts that are not of interest. Consequently, the arrival rate of new contacts to each helicopter
is reduced (note the NCW effect as shown by the arrows on the two figures).

SUMMARY AND RECOMMENDATIONS

QSIM is a queueing theory model developed to interpret the various undertakings involved in
military operations.* The multiple probability distribution functions (PDFs) for arrival, service,
and renege rates not only allow QSIM to analyze a variety of specific warfare tasks (especially
those characterized by nonexponential PDFs), but they also ensure that the model is applicable to
many other situations. Moreover, the relatively efficient run times permit the user to analyze a
range of input values quickly.

As with all models, there is room for improvement, with the current list of recommendations
for QSIM as follows:

e Add the capability for the networking of queues. Currently, there is no way to analyze
systems where the customers leaving one queue are the incoming customers to another
queue. Situations of networked queues occur all the time (e.g., detection and classifi-
cation of sonar contacts), and the capability to simulate/analyze these networks would be
highly useful.

e Link other mathematical constructs to QSIM. To accurately model the complex nature of
warfare, QSIM must have the capability to link with various mathematical constructs.

*An executable of QSIM is available upon request from the authors of this document.
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Note: As the helicopters work together, the number of contacts each helicopter must attempt to detect and classify has
decreased. Hence, the probability of detection and classification has increased. This effect increases as the number of
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Figure 2. Plot Showing Probability of Acquisition Increasing as Arrival Rate Decreases
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In particular, the use of stochastic colored Petri nets and information theory to model the
flow of information through a command and control network would allow for the
generation of accurate arrival, service, and renege PDFs. Furthermore, linking multiple
constructs would allow for the creation of an integrated family of simulations to analyze
complex warfare tasks.

e Add the capability to parameterize more than one distribution at a time. Parameteri-
zation of multiple distributions simultaneously would allow the user to more efficiently
explore various parameter combinations, thus reducing the time required to perform a
study
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APPENDIX A — DISTRIBUTIONS USED BY QSIM

QSIM employs eight PDFs, with tables A-1 through A-8 providing the PDF, CDF,

parameters, and a typical interpretation of the distribution in a sonar application.

Table A-1. Exponential Distribution

Ae® x>0
(x)=
PDF 4 0 x<0
1-e™ x20
F(x)=
CDF ) { 0 <0
Parameter A > 0 is the shape parameter
Typical Time until first sonar contact
Interpretation
Table A-2. Poisson Distribution
e‘a’
PMF f =" x=0,1,2,...
(Probability Mass ' .
. 0 otherwise
Function)
x e—a ai
CDF F(=2—
i=0 .
Parameter a>0
Typical Number of sonar contacts in a given time
Interpretation




A-2

Table A-3. Log-Normal Distribution

1 ~(Inx-p)*
PDF ——— x>0
J(¥) =1 x\/270?
0 otherwise
Inx —
CDF P -0 X24),
where @ is the standard normal distribution function
Parameters Shape parameter o> 0, scale parameter z(-00,00)
Typical Clutter density in signal processing
Interpretation
Table A-4. Inverse Gaussian Distribution
1 —AGx—p)?
PDF A 32, 2t 0
F(x) = Jzﬁx e x>
0 otherwise
CDF F(x) = cp[ i(i —1]} + e““‘cp[— fi(i + 1]] ,
x\ u x\ u
where @ is the standard normal distribution function
Parameters 4> 0 is the mean, 4> 0 is the scale parameter
Typical Time delays in ASW processes characterized by
Interpretation random walk with positive drift




Table A-5. Gamma Distribution

PDF “x*e ? 50
f(x)= ()
0 otherwise
. X
CDF (assuming x4 —]
a> 0, an integer. If F(x)= e ” _'B___ x>0
a is not an integer, iw T
there is no closed 0 otherwise
form)
Parameters a> 0 is the shape parameter, > 0 is the scale
parameter
Typical Waiting times between each sonar contact in a given
Interpretation time period
Table A-6. Erlang Distribution
ar r-1_-ax
PDF x>0
J(x)=1T(r)
0 otherwise
oS e
CDF F(x)=1- Z( )’
Parameter r>0,r=1,2,... shape parameter, o> 0 scale
parameter
Typical Service time in an # server queue with homogeneous
Interpretation service times




Table A-7. Weibull Distribution

PDF f(x)= aﬂ"’x“"e_(g] x>0
0 otherwise
CDF F(x)=1<1- e_[zJ x>0
0 otherwise
Parameters a> 0 is the shape parameter, > 0 is the scale
parameter
Typical Time until failure of first sonar unit
Interpretation
Table A-8. Uniform Distribution
! a<x<b
PDF Jx)=1b-a
0 otherwise
0 x<a
CDF Fx)=12"% a<x<b
b-a
1 x>b
Parameters aand b
Typical When arrival or service times are known but nothing
Interpretation is known about the distributions




APPENDIX B — GENERATION OF RANDOM VARIATES

This appendix describes how QSIM generates random variates, with the generation of these
variates dependent on a uniform (0,1).

GENERATION OF UNIFORM (0,1)

Due to its ease of implementation, randomness, uniformity, number of digits, and speed of
execution, the free RANROT W routine by Anger Fog' was chosen to generate uniform (0,1)
variates. The RANROT W generator is similar to the additive or lagged Fibonacci generators,
but with extra rotation or swapping of bits.

Implementation of RANROT W simply requires insertion of a #include statement. For
speed, QSIM uses the assembly language version. Randomness and uniformity are discussed in
the section entitled Generation and Validation of Random Variates in the main portion of this
document. The RANROT W routine requires less than 50 clock ticks per execution and
generates numbers with 63 bits.

EXPONENTIAL DISTRIBUTION

For the exponential distribution, the inverse transform technique is used:®

1-e® =U,
e =1-U,
-AX =In(1-U), (B-1)
1
X=——In(1-U).
P 1-U)

Step 1: Generate U.

Step 2: Return —(1/4) * In(1 - U).

WEIBULL DISTRIBUTION

An inverse transform technique is again used:®
B
_(K) ~1-U, (B-2)
a

B-1




Step 1: Generate U.
Step 2: Return a(-In(1 - U)*P.

ERLANG DISTRIBUTION

The convolution method is used for the Erlang distribution.® However, first note that an
Erlang random variable with parameters (X, 6) is the sum of K-independent exponential random
variables, each with mean 1/K6. Since it is known how to generate exponential random
variables, the following expression is obtained:

1 K
=——1In| | |U, |.
K6 (H ) (B-3)
As can be seen, converting to a product results in computational efficiency.

Step 1: Compute Prod = U, * U, *...Uk.
Step 2: Return X = (-1/4) * In(Prod).

POISSON DISTRIBUTION

Beginning with

N+l=min{n:HU,. <e”’1} (B-4)

i=1

shows that A has a Poisson distribution,” as seen in the following expression:

N = max{n : Z-—logU, < /l} . (B-5)

i=1

But —log U is exponential with rate 1, and so if —log Uj is interpreted as the interarrival times of
a Poisson process having rate 1, then N = N(A) would equal the number of events by time A.
Hence, N is Poisson with mean A.

Step 1: Compute Prod = Prod * U;, where i is the count of the number of U’s generated.

Step 2: If Prod < ¢, return (count —1); otherwise, repeat step 1.




GAMMA DISTRIBUTION

The generation of a gamma variate is based on the generation of a normal variate® as follows:

Step 1: Set D= a- 1/3, C= 1/5qrt(9D).

Step 2: Generatev=(1+C* X)? where X is standard normal.

Step 3: Generate U.

Step4: IfU<1-0.0331 * X*, then return D * v.

Step 5: Iflog(U) < 0.5 * X*+ D * (1 — v * log(v)), then return D * v.
Step 6: Return to step 2.

If @ < 1, then generate a gamma variate as above, but use =1+ a. Then, return
G * UY®) where G is a gamma variate with =1+ a.
LOG-NORMAL DISTRIBUTION

QSIM uses a property of the normal distribution to generate a log-normal variate. Namely, if
Y= N(y 0?), then X=e'=LN(4 o), resulting in the following algorithm:®

Step 1: Generate Z = N(0,1) = (-2InU})cos(2zU5).
Step 2: Let W= u+ oZ.
Step 3: Return X' = e”.

INVERSE GAUSSIAN DISTRIBUTION

A transformation’ of the following form v = g(x) is considered,; in particular,

MUX = u)?
v=gry=2ETH ey (B-6)
Xu

For each chi-square variate, v, the above transformation is solved for X to obtain a
corresponding observation from an inverse Gaussian distribution. The square of a standard
normal is the symbol v,. For any vy, there are two solutions:

Ky, p 2.2
X, =,u+-—§l——ﬁ,/4,u/1v0 +uvy o,

(B-7)

B-3




A uniform (0,1) U is generated, and the root is chosen by comparing U to

P =L (B-8)

If U > p(vo), then return x,. Otherwise, return x;.

Step 1: Generate U, Us.

Step 2: Generate Z=N(0,1) = (-2 * InU;)"* * cos(2 * U * 7).

Step 3: Z= 7%

Stepd: Xy =u+ZIQ* ) - pl/(2* ) *sqrt(4 * pu* A * Z+ it 7%,
Step 5: X, = ,112/X1.

Step 6: p= u/(u+X1).

Step 7: Generate Us.

Step 8: If (Us < p) return X;. Otherwise, return X;.

EXPLICIT DISTRIBUTION

This method assumes that the data are from a continuous distribution.® The user provides a
histogram in the form x;, x; 0, where (xi.1, x;) is the iM interval and o; is the number of
occurrences in the i interval. The end points of each interval are stored, and the cumulative
frequency for each interval is computed. Then, U is generated. Next determined is ¢;.; < U <¢;,
where c; is the cumulative frequency of the first i/ intervals. Now,

a = X —Xiy (B-9)
€ —Cia

i

is computed, resulting in

X=x,+aU-c,). (B-10)

Step 1: Read input data and generate cumulative distribution.
Step 2: Generate U and determine (.., ;).

Step 3: Compute a;.

Step 4: Returnx;.; + a;(Uz - ¢i.p).




UNIFORM DISTRIBUTION

The inverse transform technique is used as follows:®

X-a
b-a

U,

(B-11)
X=a+(b-a)*U.

Step 1: Generate U.
Step 2: Returna + U * (b - a).

\
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APPENDIX C — DERIVATION OF VERIFICATION FORMULAS

This appendix presents a derivation of all the formulas used to verify QSIM. These
derivations follow from the work of Gross and Harris” and Prabhu. "

PRELIMINARIES

First considered is a general birth-death process, with states labeled by i,i=0,1, ..., 0. If
it is assumed that 4, is the rate at which transitions from state i to i + 1 occur, y, is the rate at
which transitions from state 7 to i - 1 occur, and py is the steady-state probability that there are
k customers in the system, then, at steady state, the queue will satisfy the following differential-
difference equations for the birth-death process:

0=, +p,)p, + AP+ Byapa (2D,

(C-1)
0=-A,p, + 14D, -

Rewriting yields

A +u, A _
Pjn= ’ jpj— lej—l (.]Zl)s
Hjn Hijn (C-2)
Ay
by=—"Dy-
Hi

Thus, p;is computed as

A+ H, Ay

P=——— P —— Dy

(C-3)

D

Il
N

|
3
=
.

C-1



The pattern that appears to be emerging is

_ }“k—1’1k~2 "‘ﬂo
Py =— 0 s
MMy By
k /1
= pOH—’—i. (C-4)
-1 M

Induction verifies this formula.? From a queueing theory perspective, 4, is the mean rate at
which customers enter the system and 4, is the mean rate at which customers leave the
system.

M/M/1

Because the M/M/1 system is a birth-death process with constant birth and death rates, 4,= 1
and u,= p. Thus,

ko2 AY
pk=pog;=po(;] . (C-5)

Next, p = A/u. For the existence of a steady-state solution, p must be less than 1, or, equiva-
lently, A must be less than 4. This reasoning makes sense because if 1> x4, the server will lag
further and further behind, resulting in a queue length that grows without bound. Also, if A=y,
then the server does not have the opportunity to reduce the queue size as more customers arrive
at the system. Computation of po uses the fact that the probabilities must sum to 1, along with
the well-known solution to the geometric series, as follows:

k
> (A 1 1
P . co
k=0 \ H Zpk —
k=0 1-p
Thus,
pi =, (- p) (C-7)

Letting N be the random variable denoting the number in the system at steady state and letting L
be its expected value yields

C-2




L= E[N]=Zf)kpk =(1—p)ikp" =p(1—p)§:kp"“ ,

=p<1-p)d(#j,

dp\1-p

=—. (C-8)

If Np is the random variable denoting the number in the queue at steady state and Ly is its
expected value, then

0

Lo = BNo1= 3k —1ps = 3kps 2o pu = L) ==y (©9)

Now, applying Little’s formulas to obtain mean waiting time in the system W and mean waiting
time in the queue Wy results in

T
ﬂ.—_
(C-10)
L
w,="2= A
2 mu-4)
M/M/S

In the M/M/S system, each server has an independent and identically distributed exponential
service time, and the arrival times also follow an exponential distribution. Thus, M/M/S is a

birth-death process, such that A4,= A and a determination of £, must be made.

If there are more than S customers in the system, then each of the S servers is outputting at
mean rate x4 with the mean system output being Sy If there are fewer than S customers, say
n <, then the system is outputting at mean rate ny. Hence,

ny 1<n<s§,
u, = (C-11)
Su n>§.

Next, py is computed as



k
—ﬂ—'k*po 1<k<S,
ki
Py = T (C-12)
sosi e £20
To find py, the fact that the probabilities must sum to 1 is again used:
S-1 l’s’ © lk -1
= -+ . C'13
Po (,;k!y" ,;SS""S!,U"‘] (€13)
Now L can be computed by letting r = A/u and p=r/S= AISu:
L)=i(k—S)p =i(k—-S) y pozrspoimpk
¢ & 5 S*S81 ¢ S1 &
_r°pp, 3 mp™ = rppy d & a_rPPod( 1)
S - S! dpna St dp\l-p
__r'ppy
Si1-p)* (C-14)
Next, Little’s formulas are used to calculate /¥ and W as
L rs
Ww.="2-|—— — _Ip,
"2 [s«sﬂxl o) J”"
(C-15)

1 1 r’
w=law, =Ls|—L ——1p,.
po o (S!(Sﬂ)(l—P)Z} 0

M/M/S+M

Results from this subsection address the single and multiple server case (homogeneous
servers). Customers renege from the queue at rate & (i.e., mean time between reneges is al),
and once service begins, it continues until completion. The time in the queue and the time in the
system are for customers who acquire service.

The M/M/S + M system is a birth-death process, such that A, = A and a determination of 4,
must be made. To reflect the death process under reneging requires that (1) a customer be able

C-4




to leave the system from any of the S servers and (2) a customer be able to renege from the queue
once all the S servers are busy. Hence,

_nu 1<n<sS, (C-16)
A= su+(n-Sla n>S.
Now py is computed as
( k
po(i) 1 1<k<S,
"t A 1) K
P =po] [ =1 . y (C-17)
' (,1) 1(,1) 1
Dol — | =|— k>S,
C \4) S\a Bis

where

By =l£[(m+§—) : (C-18)

m=l1 (24

Again, the fact that the probabilities must sum to 1 to compute pyis used:

@ S ) S /1 k 1 /1 s 1 w k-S /1
lzzpk =Zpk+ Zpk=p02(_J _+p0[-j _ZH
k=1 k=1 k i\ M) K Sty

A )
=5+ H Saia SHtia

sV 1 (Y 1e(ay 1)
Wﬁ(é(;] w(2) 52(2) E:J | o

Now, the CDF of the waiting time in the queue must be derived. In particular, it is desired
that

F, (x)= Pr{ () < x | customer is served} ,

_ Pr{customer is served and w(t) < x} (C-20)
P ’ -

acq

where Py, is the probability of acquisition (i.e., the probability that an arriving customer will
acquire service) and W(7) is the time a customer waits in the queue if arriving at time z. Whether
a customer is served or not is determined by a race between the time taken waiting for a server to

C-5




become available (W) and the time the customer is prepared to wait before reneging (D). The
customer is served if W, < D. The two times are independent, resulting in

=— |fy(W)edy, (C-21)

where fiy (x) is the density of W,. If a customer arrives at time ¢ to find » customers already in the
system and then decides to wait until they are served, then the new customer would wait in the

queue for time Wo(), expressed as

0 n<sS,

Wyit)= (C-22)
o) {Dl +D,+..+D, 5, n28§,

where Dy, D,, . . . are the intervals of time between successive departures, due either to

reneging or to service completion. The intervals D;, Dy, . .. are therefore independent random

variables with Dy, havmg an exponentlal distribution with parameter Sy + (n—S—-m + l)a.
Thus, X = Dy + D;+ . . . D,.s+1 is said to be a hypoexponential random variable and has the

following density:

S .
f(t) = Z ‘;lﬂnk;' —(S#+ka)l . (C—23)
Hence,
Pr{, (1) > x}= 3 Pr{0 nS 1) Suf g e (C-24)
r t)>x¢= 1 -
’ n=8 k=0 ' -S- k)' Sﬂ""ka

where O(f) is the number of customers in the system at time #. Now, the density function fi(y) is
obtained from equation (C-24) as

3 SHRES ( 1) SUB,_s  (su+ka)i
t)= olt n=S ,~(Su+ka ’
fW() n=0pn ()+,,Z;“pnk=0 k'(n—S—k)'

S-1 o /1 n-S ,_g (_ 1)/{

= 5 t S —_ (Su+ka)t
2P, (6)+ Sups ZLJ Y el
S-1 1) o p(Surka) 1 k

= p,00)+Supe’e Y € r (—j - (C-25)
n=0 k=0 : a




The PDF f,(#) is therefore

-at| §-1

Py —(Su+ka)t _ k
£,0)=" [ané(r)wwseﬁze T (—Q } (C-26)

P.|mo k=0 a

acq

from which the mean waiting time in the queue of customers who acquire service is

W, = Iﬁ] (x)xdx ,

= S,upse%‘ i(—l)kl 1
P a ) k|Su+(k+Daf (C-27)

acg k=0

Taking the mean of the sum gives the mean waiting time in the system as

1
W =W, + " (C-28)

PROBABILITY OF ACQUISITION
Clearly, in the absence of balking and reneging, the probability of acquisition is unity. A

time interval during which Ny customers are served is considered, with the length of this interval
shown as

Ng S
T=Ty+> s+ (n-1)T,, (C-29)
i=1 n=2

where T, is the time during which there are n customers being served and s; is the time taken to
serve the i customer. In the limit of Ny— o is found

Ny
Dis, o ﬂ, (C-30)
i=1
pT n<s§,
T = S-1 C-31
" (1 - Zpk)T n==_S, ( )
x=0
and so
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N/
U

S-1 S-1 4
1-py+ Y (n=1)p, +(S -1 I—Zpk]
n=1 k=0

N%
Y7,
S-1

S-~1 :
np, + S(l —Zpk)
n=1 k=0

T —

Letting N, be the number of arrivals during the interval T results in
N, > AT.

Thus, the probability of acquiring service is

S-1

nup, Sp(. &
P=) —+—|1- .
&7 A( ;op"J

C-8

(C-32)

(C-33)

(C-34)



APPENDIX D — DETAILED VERIFICATION OF QSIM

QSIM was validated against closed-form analytical formulas (see appendix C for the
derivation of the formulas).

Tables D-1 through D-8 in this appendix compare QSIM runs to the formulas, with the runs
in each table consisting of unlimited queue length, a maximum time of 150,000 per iteration, and
a total number of 1,000 iterations. It is observed that increasing the maximum time per iteration
will improve accuracy, although it should be noted that this approach will result in longer

execution times.

Table D-1. Comparison of QSIM with Gross and Harris Formulas for Mean Wa*iting Time
in the Queue and Mean Waiting Time in the System for M/M/1 Queue

Average Waiting Time Average Waiting Time
Lambda in Queue in System
(per hour) QSIM Formula QSIM Formula
(minute) (minute) (minute) (minute)
7.5 111.742 112.5 119.242 120
4.61538 10.1902 10.2273 17.6877 17.7273
3.33333 5.35592 5.35714 12.855 12.8571
2.6087 3.62338 3.62903 11.1233 11.129
2.14286 2.74213 2.7439 10.2436 10.2439
1.81818 2.20527 2.20588 9.7049 9.70588
1.57895 1.84525 1.84426 9.34825 9.34426
1.39535 1.58114 1.58451 9.07848 9.08451
1.25 1.3883 1.38889 8.88936 8.88889
1.13208 1.23342 1.23626 8.73374 8.73626
1.03448 1.11418 1.11386 8.61254 8.61386
0.952381 1.01138 1.01351 8.50789 8.51351
0.882353 0.928446 0.929752 8.42667 8.42975
0.821918 0.859047 0.858779 8.36157 8.35878
0.769231 0.795339 0.797872 8.29462 8.29787
0.722892 0.746091 0.745033 8.24631 8.24503
0.681818 0.699816 0.698758 8.20136 8.19876
0.645161 0.658415 0.657895 8.15887 8.15789
0.612245 0.619698 0.621547 8.12009 8.12155
0.582524 0.590375 0.589005 8.09186 8.08901
0.555556 0.558507 0.559701 8.05764 8.0597

*Service rate is 8 per hour
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Table D-2. Comparison of QSIM with Gross and Harris Formulas for Mean Waltmg Time

in the Queue and Mean Waiting Time in the System for M/M/2 Queue

Average Waiting Time Average Waiting Time
Lambda in Queue in System
(per hour) QSIM Formula QSIM Formula
(minute) (minute) (minute) (minute)
7.5 2.11211 1.62562 9.61347 9.12562
4.61538 0.680194 0.602852 8.18076 8.10285
3.33333 0.339253 0.317483 7.83553 7.81748
2.6087 0.204298 0.195865 7.70354 7.69586
2.14286 0.136932 0.132783 7.63369 7.63278
1.81818 0.0981868 0.0958923 7.59944 7.59589
1.57895 0.0735183 0.0724728 7.57272 7.57247
1.39535 0.0571676 0.056685 7.55757 7.55669
1.25 0.0461385 0.0455418 7.54408 7.54554
1.13208 0.0378717 0.037386 7.53757 7.53739
1.03448 0.0316581 0.0312385 7.5324 7.53124
0.952381 0.0266479 0.0264904 7.5242 7.52649
0.882353 0.0228983 0.0227474 7.527 7.52275
0.821918 0.0199794 0.0197447 7.51823 7.51974
0.769231 0.0172348 0.0172993 7.51215 7.5173
0.722892 0.0154225 0.0152814 7.51687 7.51528
0.681818 0.0136631 0.0135968 7.51065 7.5136
0.645161 0.0124371 0.0121761 7.5127 7.51218
0.612245 0.0111801 0.0109669 7.51166 7.51097
0.582524 0.00994147 0.00992924 7.50896 7.50993
0.555556 0.0090545 0.00903211 7.5079 7.50903

*Service rate is 8 per hour




Table D-3. Comparison of QSIM with Gross and Harris Formulas for Mean Wattmg Time

in the Queue and Mean Waiting Time in the System for M/M/3 Queue’

Average Waiting Time Average Waiting Time
Lambda in Queue in System
(per hour) QSIM Formula QSIM Formula
(minute) (minute) (minute) (minute)

7.5 0.282253 0.244059 7.77985 7.74406
4.61538 0.0683808 0.0658599 7.56852 7.56586
3.33333 0.026817 0.0263011 7.52914 7.5263
2.6087 0.0131066 0.013002 7.51201 7.513
2.14286 0.00741906 0.00734591 7.50613 7.50735
1.81818 0.00454836 0.00454651 7.50258 7.50455
1.57895 0.00305491 0.00300629 7.50631 7.50301
1.39535 0.00207056 0.00209004 7.50373 7.50209
1.25 0.00146832 0.00151129 7.50493 7.50151
1.13208 0.00108488 0.00112793 7.50155 7.50113
1.03448 0.000866945 0.000863994 7.50089 7.50086
0.952381 0.000675803 0.000676383 7.50156 7.50068
0.882353 0.000543176 0.000539386 7.50101 7.50054
0.821918 0.000431764 0.000437024 7.50142 7.50044
0.769231 0.00034423 0.000359008 7.50091 7.50036
0.722892 0.000287073 0.00029851 7.49695 7.5003
0.681818 0.000266051 0.000250876 7.50256 7.50025
0.645161 0.000194209 0.000212861 7.5016 7.50021
0.612245 0.000195603 0.000182155 7.49996 7.50018
0.582524 0.000151597 0.000157082 7.49811 7.50016
0.555556 0.000120998 0.000136407 7.50316 7.50014

*Service rate is 8 per hour
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Table D-4. Comparison of QSIM with Gross and Harris Formulas for Mean Wattmg Time
in the Queue and Mean Waiting Time in the System for M/M/4 Queue’

Average Waiting Time Average Waiting Time

Lambda in Queue in System

(per hour) QSIM Formula QSIM Formula

(minute) (minute) (minute) (minute)

7.5 0.039694 0.0383807 7.53853 7.53838
4.61538 0.00664145 0.00657687 7.50561 7.50658
3.33333 0.00193033 0.00192896 7.50019 7.50193
2.6087 0.000767387 0.000754889 7.49868 7.50075
2.14286 0.000336912 0.000353222 7.50178 7.50035
1.81818 0.000167889 0.000186622 7.50219 7.50019
1.57895 0.000110045 0.000107663 7.49985 7.50011
1.39535 6.79396E-05 6.64E-05 7.50211 7.50007
1.25 4.23307E-05 4.31E-05 7.50125 7.50004
1.13208 2.62157E-05 2.92E-05 7.50323 7.50003
1.03448 1.91543E-05 2.05E-05 7.49713 7.50002
0.952381 1.62049E-05 1.48E-05 7.49723 7.50001
0.882353 1.11597E-05 1.09E-05 7.49981 7.50001
0.821918 8.15201E-06 8.27E-06 7.50031 7.50001
0.769231 7.3799E-06 6.37E-06 7.50049 7.50001
0.722892 4.38335E-06 4.98E-06 7.49737 7.5
0.681818 3.50833E-06 3.95E-06 7.50215 7.5
0.645161 1.91686E-06 3.18E-06 7.50525 7.5
0.612245 2.10691E-06 2.58E-06 7.50455 7.5
0.582524 1.83171E-06 2.12E-06 7.49806 7.5
0.555556 9.16891E-07 1.76E-06 7.50087 7.5

*Service rate is 8 per hour




Table D-5. Comparison of QSIM with Prabhu Formulas for Mean Waiting Time in the

Queue, Mean Waiting Time in the System, and Probability of :4cquisition

for M/M/1 Queue with Renege Rate of 2 per Hour

Average Waiting Time in | Average Waiting Time Probability of
Lambda Queue in System Acquisition
QSIM Formula QSIM Formula QSIM Formula
(per hour) (minute) (minute) (minute) (minute)

. 6.58665 6.59195 14.085 14.092 0.761837 | 0.761688
4.61538 3.52435 3.52744 11.0233 11.0274 0.863421 | 0.863331
3.33333 2.38806 2.38464 9.88889 9.88464 0.905237 | 0.905287
2.6087 1.79584 1.7967 9.29802 9.2967 0.927769 | 0.927749
2.14286 1.44022 1.44006 8.9398 8.94006 0.941622 | 0.941663
1.81818 1.20024 1.20108 8.69927 8.70108 0.951096 | 0.951107
1.57895 1.03024 1.02992 8.53028 8.52992 0.957931 0.95793
1.39535 0.901174 0.901361 8.39918 8.40136 0.96309 0.963087
1.25 0.799359 0.801278 8.3002 8.30128 0.967145 | 0.967121
1.13208 0.721994 0.721167 8.22363 8.22117 0.970346 | 0.970362
1.03448 0.655689 0.6556 8.15644 8.1556 0.973016 | 0.973022
0.952381 | 0.600801 0.60095 8.10308 8.10095 0.975286 | 0.975244
0.882353 | 0.554539 0.554701 8.05002 8.0547 0.977172 | 0.977129
0.821918 | 0.514868 0.515057 8.01661 8.01506 0.978689 | 0.978747
0.769231 | 0.481243 0.480698 7.98247 7.9807 0.980183 | 0.980152
0.722892 | 0.4513 0.450633 7.95201 7.95063 0.981443 | 0.981383
0.681818 | 0.423846 0.424106 7.92445 7.92411 0.98246 0.98247
0.645161 | 0.401747 0.400526 7.90441 7.90053 0.983434 | 0.983437
0.612245 | 0.379685 0.37943 7.88035 7.87943 0.984324 | 0.984303
0.582524 | 0.360966 0.360444 7.86132 7.86044 0.985091 0.985083
0.555556 | 0.343308 0.343266 7.84038 7.84327 0.985776 | 0.985789

*Service rate is 8 per hour
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Table D-6. Comparison of QSIM with Prabhu Formulas for Mean Waiting Time in the

Queue, Mean Waiting Time in the System, and Probability of ‘Acquisition

for M/M/2 Queue with Renege Rate of 2 per Hour

Average Waiting Time Average Waiting Probability of
Lambda in Queue Time in System Acquisition
hour) QSIM Formula QSIM Formula QSIM Formula
(per (minute) (minute) (minute) | (minute)
1.15924 1.15923 8.66064 8.65923 0.956415 | 0.956409
4.61538 0.449371 0.449299 7.94853 7.9493 0.982974 | 0.982991
3.33333 0.238894 0.23857 7.73971 7.73857 0.990999 | 0.990969
2.6087 0.147738 0.147961 7.64845 7.64796 0.994404 | 0.994404
2.14286 0.10039 0.100747 7.59961 7.60075 0.996195 | 0.996193
1.81818 0.073312 0.0730281 7.57343 7.57303 0.997254 | 0.997243
1.57895 0.0552606 0.0553679 7.55329 7.55537 0.997918 | 0.997911
1.39535 0.0434785 0.043424 7.54662 7.54342 0.99836 0.998362
1.25 0.0349282 0.0349693 7.5338 7.53497 0.998682 | 0.998682
1.13208 0.0286495 0.0287651 7.52623 7.52877 0.998926 [ 0.998916
1.03448 0.0239739 0.0240777 7.52373 7.52408 0.999102 | 0.999093
0.952381 0.0204971 0.0204498 7.52049 7.52045 0.999236 | 0.99923
0.882353 0.0177909 0.0175846 7.51993 7.51758 0.999339 | 0.999338
0.821918 0.0152476 0.0152821 7.51572 7.51528 0.999421 0.999425
0.769231 0.0133731 0.0134041 7.51294 7.5134 0.9995 0.999496
0.722892 0.0118411 0.0118523 7.5113 7.51185 0.999562 | 0.999554
0.681818 0.0105949 0.0105552 7.51089 7.51056 0.9996 0.999603
0.645161 0.00943042 | 0.00946005 | 7.5075 7.50946 0.999643 | 0.999644
0.612245 0.00846306 | 0.00852692 | 7.5095 7.50853 0.999679 | 0.999679
0.582524 0.00767938 | 0.00772537 | 7.50946 7.50773 0.999712 | 0.99971
0.555556 0.007035 0.00703178 | 7.50782 7.50703 0.999738 [ 0.999736

*Service rate is 8 per hour
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Table D-7. Comparison of QSIM with Prabhu Formulas for Mean Waiting Time in the
Queue, Mean Waiting Time in the System, and Probability of Acquisition
for M/M/3 Queue with Renege Rate of 2 per Hour

Average Waiting Time in | Average Waiting Time Probability of
Lambda Queue in System Acquisition
(per hour) QSIM Formula QSIM Formula QSIM Formula
(minute) (minute) (minute) | (minute)
7.5 0.204564 0.204332 7.70132 7.70433 0.992528 0.992504
4.61538 0.0537731 0.053835 7.55541 7.55383 0.998044 0.998034
3.33333 0.0215666 0.021551 7.52143 7.52155 0.99921 0.999215
2.6087 0.0107505 0.010709 7.51406 7.51071 0.999611 0.999611
2.14286 0.00605784 0.006078 7.50746 7.50608 0.999783 0.999779
1.81818 0.0038534 0.003776 7.50302 7.50378 0.99986 0.999863
1.57895 0.00251681 0.002504 7.50159 7.5025 0.99991 0.999909
1.39535 0.00176683 0.001745 7.50115 7.50175 0.999938 0.999937
1.25 0.00125628 0.001265 7.49978 7.50126 0.999955 0.999954
1.13208 0.000917958 | 0.000945 7.50017 7.50095 0.999965 0.999966
1.03448 0.000732567 | 0.000725 7.50301 7.50073 0.999973 0.999974
0.952381 0.000560954 | 0.000568 7.50251 7.50057 0.99998 0.999979
0.882353 0.000440237 | 0.000454 7.50089 7.50045 0.999984 0.999984
0.821918 0.00037727 0.000368 7.49938 7.50037 0.999987 0.999987
0.769231 0.000298345 | 0.000302 7.49891 7.5003 0.99999 0.999989
0.722892 0.000245161 | 0.000252 7.50007 7.50025 0.999991 0.999991
0.681818 0.00021755 0.000212 7.5006 7.50021 0.999992 0.999992
0.645161 0.000173681 | 0.00018 7.50263 7.50018 0.999993 0.999994
0.612245 0.000154152 | 0.000154 7.5001 7.50015 0.999995 0.999994
0.582524 0.000134588 | 0.000133 7.50209 7.50013 0.999996 0.999995
0.555556 0.000121532 | 0.000115 7.50282 7.50012 0.999996 0.999996

*Service rate is 8 per hour

D-7




Table D-8. Comparison of QSIM with Prabhu Formulas for Mean Waiting Time in the
Queue, Mean Waiting Time in the System, and Probability of Acquisition
for M/M/4 Queue with Renege Rate of 2 per Hour"

Average Waiting Time in | Average Waiting Time Probability of
Lambda Queue in System Acquisition
(per hour) QSIM Formula QSIM Formula QSIM Formula
(minute) (minute) (minute) | (minute)
7.5 0.0326052 0.032631 7.53139 7.53263 (0.998833 0.99883
4.61538 0.00565102 0.005603 7.50216 7.5056 0.999801 0.9998
3.33333 0.00166301 0.001658 7.49841 7.50166 0.999941 0.999941
2.6087 0.000638069 | 0.000653 7.50067 7.50065 0.999978 0.999977
2.14286 0.000308724 | 0.000307 7.50402 7.50031 0.999988 0.999989
1.81818 0.000159394 | 0.000163 7.49994 7.50016 0.999995 0.999994
1.57895 9.52E-05 9.40E-05 7.50041 7.50009 0.999996 0.999997
1.39535 5.48E-05 5.81E-05 7.50335 7.50006 0.999998 0.999998
1.25 3.89E-05 3.78E-05 7.49941 7.50004 0.999998 0.999999
1.13208 2.69E-05 2.56E-05 7.50142 7.50003 0.999999 0.999999
1.03448 2.00E-05 1.80E-05 7.49902 7.50002 0.999999 0.999999
0.952381 1.36E-05 1.30E-05 7.49913 7.50001 1 1
0.882353 8.78E-06 9.62E-06 7.49978 7.50001 1 1
0.821918 6.36E-06 7.28E-06 7.50124 7.50001 1 1
0.769231 7.42E-06 5.60E-06 7.49878 7.50001 1 1
0.722892 7.22E-06 4.38E-06 7.50011 7.5 1 1
0.681818 2.26E-06 3.48E-06 7.50188 7.5 1 1
0.645161 3.01E-06 2.80E-06 7.49796 7.5 1 1
0.612245 2.75E-06 2.27E-06 7.49913 7.5 1 1
0.582524 2.01E-06 1.87E-06 7.50058 7.5 1 1
0.555556 9.54E-07 1.55E-06 7.50103 7.5 1 1

*Service rate is 8 per hour




REFERENCES

1. Ralph S. Klingbeil and Keith M. Sullivan, “An Analysis of Decision Making Time Delay,”
NUWC-NPT Technical Memo 03-028, Naval Undersea Warfare Center Division, Newport,
RI, 10 February 2003.

2. Donald Gross and Carl M. Harris, Fundamentals of Queueing Theory, 3" edition, John
Wiley and Sons Inc., New York, 1998.

3. C.J. Ancker and A. V. Gafarian, “Queuing with Reneging and Multiple Heterogeneous
Servers,” Naval Research Logistics Quarterly, vol. 10, 1963, pp. 125-149.

4. Agner Fog, “Pseudo Random Number Generators,” http://www.agner.org/randony.
5. George Marsaglia, DIEHARD, http:/stat.fsu.edu/~geo/diehard.html.

6. Jerry Banks, John Carson II, Barry Nelson, and David Nicol, Discrete Event System
Simulation, 3™ edition, Prentice Hall, Upper Saddle River, NJ, 2001.

7. Sheldon M. Ross, Introduction to Probability Models, 7t edition, Harcourt Academic
Press, San Diego, CA, 2000.

8. George Marsaglia and Wai Wan Tsang, “A Simple Method for Generating Gamma
Variables,” ACM Transactions on Mathematical Software, vol. 26, no. 3, September 2000,
pp. 363-372.

9. John R. Michael, William R. Schucany, and Roy W. Haas, “Generating Random Variates
Using Transformations with Multiple Roots,” The American Statistician, vol. 30, no. 2,
May 1976, pp. 88-90.

10. N. U. Prabhu, Foundations of Queueing Theory, International Series in Operations

Research and Management Science, vol. 7, Kluwer Academic Publishers, Boston, MA,
1997.

BIBLIOGRAPHY
Allen, A. O., Probability, Statistics, and Queueing Theory with Computer Science Applications,
2" edition, Academic Press Inc., Boston, MA, 1990.

Ancker, C. J., and A. V. Gafarian, “Queueing with Impatient Customers Who Leave at
Random,” The Journal of Industrial Engineering, vol. 13, 1962, pp. 84-90.



Ancker, C. J., and A. V. Gafarian, “Some Queuing Problems with Balking and Reneging I,”
Operations Research, vol. 11, 1963, pp. 88-100.

Ancker, C. J., and A. V. Gafarian, “Some Queuing Problems with Balking and Reneging II,”
~ Operations Research, vol. 11, 1963, pp. 928-937.

Ayyub, B. M., and Richard H. McCuen, Probability, Statistics, & Reliability for Engineers, CRC
Press, New York, 1997.

Chhikara, R. S., and J. Leroy Folks, The Inverse Gaussian Distribution: Theory, Methodology,
and Applications, Marcel Dekker Inc., New York, 1989.

Cormen, Thomas, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to
Algorithms, 2" edition, The MIT Press, Cambridge, MA, 2001.

Hoel, Paul G., Sidney C. Port, and Charles J. Stone, Introduction to Probability Theory,
Houghton Mifflin Company, Boston, MA, 1971.

Horton, 1., Beginning Visual C++, Wrox Press Ltd., Birmingham, UK, 2001.

Johnson, N. L., S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Volume 1,
2" edition, John Wiley & Sons Inc., New York, NY, 1994.

Law, Averill, and David Kelton, Simulation Modeling and Analysis, 3" edition, McGraw-Hill,
Boston, MA, 2000.

Prosise, J., Programming Windows with MFC, 2™ edition, Microsoft Press, Redmond, WA,
1999.




INITIAL DISTRIBUTION LIST

Addressee - No. of Copies

Defence Science and Technology Organisation, Rockingham,
Western Australia (C. Davis) 1

Defence Science and Technology Organisation, Ministry of Defence,
Edinburgh, Australia (M. Fewel, I. Grivell (5)) 6

Defence Research and Development Canada, Dartmouth, Nova Scotia,
Canada (M. Hazen) 1

Maritime Operational Research Team National Defence Headquarters,
Ottawa, Ontario, Canada (R. Burton) 1

Maritime Systems Group, Defense Technology Agency, Her Majesty’s

New Zealand Naval Base, Auckland, New Zealand (S. McMillian) 2
Defence Science and Technology Laboratory, Portland, United Kingdom

(P. Marland) 1
Space and Naval Warfare Systems Command, SPAWAR Systems Center,

San Diego, CA (G. Galdorisi) 1
Defense Technical Information Agency 2

Center for Naval Analyses 1



